Myelodysplastic Syndromes: Diagnosis and Risk Assessment

Rafael Bejar MD, PhD MDS Patient and Family Forum June 29, 2024

Overview

- Introduction to MDS
- Making the diagnosis
- Disease classifications
- Risk stratification
- Questions and Answers

Introduction to MDS

Myelodysplastic Syndromes

- Shared features:
 - Low blood counts
 - Clonal overgrowth of bone marrow cells
 - Risk of transformation to acute leukemia
- Afflicts 15,000 45,000 people annually
- Incidence rises with age (mean age 76)

Normal Hematopoiesis

cyte
ocyte
ell
te
vocyte
il
il
nde/
ell
ns cell
cell
.+
st

Differentiation

Transformation

Advanced

Who gets MDS?

MDS Incidence Rates 2000-2008

http://seer.cancer.gov. Accessed May 1, 2013.

ge and Sex in MDS

Overall incidence in this analysis: 3.4 per 100,000

Rollison DE et al Blood 2008;112:45-52.

MDS Incidence Rates 2023

Myelodysplastic syndromes (MDS) SEER Incidence Rates by Age at Diagnosis, 2017-2021 By Sex, Delay-adjusted SEER Incidence Rate, All Races / Ethnicities

Legend (Sex)

Male¹

MDS Incidence 2023

Myelodysplastic syndromes (MDS) SEER 5-Year Age-Adjusted Incidence Rates, 2017-2021 All Stages By Race/Ethnicity, Both Sexes, All Ages

Etiology of MDS

Often early onset and part of a larger syndrome

Peaks 1-3 or 5-7 years following exposure

80%

"De novo" (idiopathic, primary)

Median age ~76 years; increased risk with aging

Making the Diagnosis

Who do we suspect?

Suspicion for MDS increases with:

- > Age
- Prior cytotoxic or chemical/radiation exposures
- \blacktriangleright Number and severity of cytopenias (low blood counts)
- Family history
- Lack of an alternative explanations
- Evidence of dysplasia in peripheral blood

Myelodysplastic Syndromes

NCCN Guidelines Version 1.2021 Myelodysplastic Syndromes

INITIAL EVALUATION

Cytopenia(s), suspect myelodysplasia ^a	 H&P Complete blood count (CBC), platelets, differential, reticulocyte count Examination of peripheral blood smear Bone marrow aspiration with iron stain + biopsy + cytogenetics by standard karyotyping.^b Consider testing bone marrow sample for fibrosis. Serum erythropoietin (prior to red blood cell [RBC] transfusion) RBC folate, serum B12^C Serum ferritin, iron, total iron-binding capacity (TIBC) Documentation of transfusion history Thyroid-stimulating hormone (TSH) Lactate dehydrogenase (LDH) Genetic testing for somatic mutations (ie, acquired mutations) in genes associated with MDS is highly recommended^d Recommend additional molecular and genetic testing for hereditary hematologic malignancy predisposition in a subset of patients, particularly in younger patients^e HIV testing if clinically indicated Consider evaluation of copper deficiency in patients with GI malabsorption, severe malnutrition, gastric bypass surgery, or patients on zinc supplementation Consider distinction from congenital sideroblastic anemia (CSA)^f 		Dia est on cyt clin clin cri MC bu pre
---	---	--	---

NCCN Guidelines Index **Table of Contents** Discussion

agnosis of MDS See Additional tablished based Testing and morphologic, Classification togenetic, and (MDS-2) nical criteria^{g,h}

Minimal Diagnostic Criteria

Cytopenia(s):

- Low hemoglobin, or •
- Low neutrophil count, or ullet
- Low platelet count •

MDS "decisive" criteria:

- >10% dysplastic cells in 1 or more lineages, or
- 5-19% blasts, or
- Abnormal karyotype typical for MDS, or
- Specific **mutations** typical of MDS

Other causes of cytopenias and morphological changes EXCLUDED:

- *Vitamin B12/folate deficiency*
- HIV or other viral infection
- *Copper deficiency*
- Alcohol abuse
- *Medications (esp. methotrexate, azathioprine, recent chemotherapy)*
- Autoimmune conditions (ITP, Felty syndrome, SLE etc.)
- Congenital syndromes (Fanconi anemia etc.)
- Other hematological disorders (aplastic anemia, LGL disorders, MPN etc.)

Slide borrowed from Dr. David Steensma

Valent P et al Leuk Res 2007;31:727-736.

Bone Marrow Biopsy

Illustration Copyright © 2016 Nucleus Medical Media, All rights reserved. www.nucleusinc.com

From: NCCN Guidelines for Patients: MDS

The Bone Marrow

From: NCCN Guidelines for Patients: MDS

Illustration Copyright © 2016 Nucleus Medical Media, All rights reserved. www.nucleusinc.com

Chromosomes and Mutation Testing

Illustration Copyright © 2016 Nucleus Medical Media, All rights reserved. www.nucleusinc.com

Looking for Answers

65 year-old woman with mild anemia and a platelet count that fell slowly from 230 to 97 over the past 3 years.

Making the Diagnosis

65 year-old woman with mild anemia and a platelet count that fell slowly from 230 to 97 over the past 3 years.

Another example

71 year-old man with big red cells and low blood counts that developed over the past 6 months.

Normal Range 7.9 1.9 45

- B12 level Normal Folate - Normal Thyroid - Normal
- No toxic medications
- No alcohol use
- No chronic illness

Making the Diagnosis

71 year-old man with big red cells and low blood counts that developed over the past 6 months.

Hypercellular bone marrow (90%) 12% blasts in aspirate Dysplasia in all three cell types > 10% Abnormal Karyotype: 46,XY,-7,del(17)(p12)[13]/46,XY[7] Mutations in TP53, RUNX1, and U2AF1

Classification of MDS Subtypes

World Health Organization MDS categories (2016)

Subtype	Blood	Bone marrow
MDS with single lineage dysplasia (MDS-SLD) ³	Single or bicytopenia	Dysplasia in ≥10% of
MDS with ring sideroblasts (MDS-RS)	Anemia, no blasts	≥15% of erythroid presideroblasts, or ≥5% mutation present
MDS with multilineage dysplasia (MDS-MLD)	Cytopenia(s), <1 x 10 ⁹ /L monocytes	Dysplasia in ≥10% of lineages, ± 15% ring
MDS with excess blasts-1 (MDS-EB-1)	Cytopenia(s), ≤2%–4% blasts, <1 x 10 ⁹ /L monocytes	Unilineage or multilir 5%–9% blasts, no Au
MDS with excess blasts-2 (MDS-EB-2)	Cytopenia(s), 5%–19% blasts, <1 x 10 ⁹ /L monocytes	Unilineage or multilir 10%–19% blasts, ± A
MDS, unclassifiable (MDS-U)	Cytopenias, ±1% blasts on at least 2 occassions	Unilineage dysplasia characteristic MDS c
MDS with isolated del(5q)	Anemia, platelets normal or increased	Unilineage erythroid <5% blasts
Refractory cytopenia of childhood	Cytopenias, <2% blasts	Dysplasia in 1–3 line
MDS with excess blasts in transformation (MDS-EB-T) ²	Cytopenias, 5%–19% blasts	Multilineage dysplas blasts, ± Auer rods

one cell line, <5% blasts

ecursors w/ring ring sideroblasts if SF3B1

cells in ≥2 hematopoietic sideroblasts, <5% blasts

neage dysplasia, ler rods

neage dysplasia, uer rods

or no dysplasia but ytogenetics, <5% blasts

dysplasia, isolated del(5q),

ages, <5% blasts

a, 20%–29%

2016 WHO MDS Classification Disease Subtypes

Single versus multilineage dysplasia, ring sideroblasts, isolated del(5q)

<5% BM blasts

5-9% BM blasts

World Health Organization MDS categories (2016)

Cazzola. Haematologica. 2011 Mar;96(3):349-52.

Two new classifications of myeloid neoplasms in 2022

The International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: Integrating Morphological, Clinical, and Genomic Data

Daniel A. Arber, Attilio Orazi, Robert P. Hasserjian, Michael J. Borowitz, Katherine R. Calvo, Hans-Michael Kvasnicka, Sa A. Wang, Adam Bagg, Tiziano Barbui, Susan Branford, Carlos E. Bueso-Ramos, Jorge E. Cortes, Paola Dal Cin, Courtney D. DiNardo, Herve' Dombret, Eric J. Duncavage, Benjamin L. Ebert, Elihu H. Estey, Fabio Facchetti, Kathryn Foucar, Naseema Gangat, Umberto Gianelli, Lucy A. Godley, Nicola Gökbuget, Jason Gotlib, Eva Hellström-Lindberg, Gabriela S. Hobbs, Ronald Hoffman, Elias J. Jabbour, Jean-Jacques Kiladjian, Richard A. Larson, Michelle M. Le Beau, Mignon L-C. Loh, Bob Löwenberg, Elizabeth Macintyre, Luca Malcovati, Charles G. Mullighan, Charlotte Niemeyer, Olatoyosi M. Odenike, Seishi Ogawa, Alberto Orfao, Elli Papaemmanuil, Francesco Passamonti, Kimmo Porkka, Ching-Hon Pui, Jerald P. Radich, Andreas Reiter, Maria Rozman, Martina Rudelius, Michael R. Savona, Charles A. Schiffer, Annette Schmitt-Graeff, Akiko Shimamura, Jorge Sierra, Wendy A. Stock, Richard M. Stone, Martin S. Tallman, Jürgen Thiele, Hwei-Fang Tien, Alexandar Tzankov, Alessandro M. Vannucchi, Paresh Vyas, Andrew H. Wei, Olga K. Weinberg, Agnieszka Wierzbowska, Mario Cazzola, Hartmut Döhner and Avalew Tefferi

Blood. 2022 Sep 15;140(11):1200-1228.

The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/ **Dendritic Neoplasms**

Joseph D. Khoury 10¹², Eric Solary 10²², Oussama Abla³, Yassmine Akkari 10⁴, Rita Alaggio⁵, Jane F. Apperley 10¹, Rafael Bejar 10¹ Emilio Berti⁸, Lambert Busque ⁹, John K. C. Chan¹⁰, Weina Chen ¹¹, Xueyan Chen¹², Wee-Joo Chng¹³, John K. Chorus, Isabel Colmenero 15, Sarah E. Coupland¹⁶, Nicholas C. P. Cross 17, Daphne De Jong¹⁸, M. Tarek Elghetany¹⁹, Emiko Takahashi 20, Jean-Francois Emile ²¹, Judith Ferry²², Linda Fogelstrand²³, Michaela Fontenay²⁴, Ulrich Germing²⁵, Sumeet Gujral²⁶, Torsten Haferlach (27, Claire Harrison²⁸, Jennelle C. Hodge²⁹, Shimin Hu (21, Joop H. Jansen³⁰, Rashmi Kanagal-Shamanna (21, 1) Hagop M. Kantarjian (1)³¹, Christian P. Kratz (1)³², Xiao-Qiu Li³³, Megan S. Lim³⁴, Keith Loeb³⁵, Sanam Loghavi (1)¹, Andrea Marcogliese¹⁹, Soheil Meshinchi³⁶, Phillip Michaels³⁷, Kikkeri N. Naresh ³⁵, Yasodha Natkunam ³⁸, Reza Nejati³⁹, German Ott⁴⁰, Eric Padron ⁴¹, Keyur P. Patel¹, Nikhil Patkar ⁴², Jennifer Picarsic⁴³, Uwe Platzbecker ⁴⁴, Irene Roberts⁴⁵, Anna Schuh ⁴⁶, William Sewell⁴⁷, Reiner Siebert⁴⁸, Prashant Tembhare ⁴², Jeffrey Tyner ⁴⁹, Srdan Verstovsek ³¹, Wei Wang ¹, Brent Wood⁵⁰, Wenbin Xiao ⁵¹, Cecilia Yeung 10³⁵ and Andreas Hochhaus 10^{52 26}

Leukemia. 2022 Jul;36(7):1703-1719.

2016 WHO MDS Classification Disease Subtypes

Single versus multilineage dysplasia, ring sideroblasts, isolated del(5q)

<5% BM blasts

5-9% BM blasts

2022 WHO MDS Classification Disease Subtypes

MDS-bi TP53 (any blast %)

Single versus multilineage dysplasia, ring sideroblasts, isolated del(5q)

<5% BM blasts

5-9% BM blasts

Courtesy Robert P Hasserjian

2022 ICC MDS Classification Disease Subtypes

MDS-bi TP53 (any blast %)

Single versus multilineage dysplasia, ring sideroblasts, isolated del(5q)

<5% BM blasts

5-9% BM blasts

What questions should you ask about your diagnosis?

What did my bone marrow biopsy show?

- Did they find enough dysplastic cells to call it MDS?
- How many blasts were there?
- Did I have RING SIDEROBLASTS? If so, how many?
- Where the chromosomes normal or abnormal?
- What mutations were found, if any?

Was this consistent with MDS and if so, what subtype is it?

What if it's abnormal but its not typical MDS?

MDS-related diagnoses:

- Chronic Myelomonocytic Leukemia (CMML)
- MDS with Ring Sideroblasts and Thrombocytosis (MDS/MPN-RS-T)
- > MDS with Germline Predisposition?
- Is it Acute Myeloid Leukemia (AML)?
- Is it a Clonal Cytopenia of Undetermined Significance (CCUS)?

The Borders of MDS

Slide from Robert P Hasserjian

- 1. Identification in blood (or marrow) DNA with one or more somatic gene mutations in *myeloid malignancy driver* genes of VAF ≥ 2%
- 2. Lack of evidence for a defined hematological disorder harboring the identified mutation(s)
- 3. Unexplained cytopenia(s) such as anemia (hemoglobin < 12 g/dL in females and < 13 g/dL in males), neutropenia (absolute neutrophil count < 1.8×10^9 /L), and/or thrombocytopenia (platelets < 150×10^9 /L) that is not explained by another condition (persistent >4 months) ICC).

evolves depends on several factors

MDS + Ring Sideroblasts and Thrombocytosis

- Can have dysplasia like MDS-RS
- Has ring sideroblasts like MDS-RS
- Can have low blood counts like MDS-RS
- Low risk of acute leukemia like MDS-RS
- Can share mutations with MDS-RS
- Similar range of prognosis to MDS-RS

BUT, has some unique patterns with:

More JAK2, CALR, or MPL mutations

May have a higher risk of blood clots

Chronic Myelomonocytic Leukemia

CMML

- Can have low blood counts like MDS
- Can become acute leukemia like MDS
- Can share mutations with MDS
- Similar range of prognosis to MDS
- Similar treatments as for MDS

BUT, has some unique patterns with:

More TET2, ASXL1, SRSF2, NRAS, KRAS mutations

Tends to be more inflammatory

Prognosis & Risk Assessment

Risk-Adapted Therapy

Lower Risk

- Observation
- ESAs/Luspatercept
 - Lenalidomide
 - Imetelstat
 - Immune
 - suppression

Higher Risk

- Azacitidine
 - Decitabine
 - Allo-HSCT
 - **Clinical Trials**

International Prognostic Scoring System

Cytogenetic Risk Group	IPSS Karyotype Abnormalities (7 categories)
Good	Normal, -Y, del(5q), del(20q)
Intermediate	+8, any other single or double abnormality
Poor	Complex with ≥ 3 abnormalities, anomaly of chromosome 7

IPSS Parameter	Categories and Associated Scores				
O management a Direk Computer	Good	Intermediate	Poor		
Cytogenetic Risk Group	0	0.5	1		
Pone Marrow Plact 9/	≤5%	5%-10%		11%-20%	21%-30%
DONE Marrow Didst 70	0	0.5		1.5	2
Number of Participat	0.or 1	2 or 3			
Number of Cytopenias	0	0.5			
Definition of Cytopenias	_				
Hemoglobin < 10 g/dL					
Neutrophil Count < 1.80 x 10 ⁹ /l	L.				
Platelet Count < 100 x 10 ⁹ /L					

IPSS Risk Group	Points	% of Patients	Median survival, years	Time to 25% with AML, years
Low	0	33%	5.7	9.4
Intermediate-1	0.5 - 1	38%	3.5	3.3
Intermediate-2	1.5 - 2	22%	1.1	1.1
High	≥ 2.5	7%	0.4	0.2

Greenberg et al. Blood. 1997;89:2079-88.

Time to AML Evolution, Years

LOWER Risk

MD Anderson Lower Risk PSS

Allows for reweighting of risk factors and inclusion of new ones

Leukemia (2008) 22, 538–543

Bejar et al. JCO. 2012

Impact of EZH2 Mutations in LR-PSS

Kristen Stevenson & Donna Neuberg

Bejar et al. JCO. 2012

IPSS-Revised (IPSS-R)

Cytogenetic Risk Group	IPSS-R Karyotype Abnormalities (19 categories)		
Very good	del(11q), -Y		
Good	Normal, del(20q), del(5q) alone or with 1 other anomaly, del(12p)		
Intermediate	+8, del(7q), i(17q), +19, +21, any single or double abnormality not listed, two or more independent clones		
Poor	der(3q), -7, double with del(7q), complex with 3 abnormalities		
Very Poor	Complex with > 3 abnormalities		

IPSS-R Parameter	Categories and Associated Scores						
Construction Diale Consum	Very good	Good	Intermediate	Poor	Very Poor		
Cytogenetic Risk Group	0	1	2	3	4		
Rope Marrow Blact %	≤ 2%	>2%-<5%	5% - 10%	>10%			
bone Marrow blast %	0	1	2	3			
Hamadahin (a(d))	≥10	8-<10	< 8				
nemoglobin (g/or)	0	1	1.5				
51 - 1 - 5	≥ 100	50-<100	< 50				
Platelet Count (x 10 /L)	0	0.5	1				
Absolute Neutrophil Count	≥0.8	< 0.8					
(x 10 ⁹ /L)	0	0.5					

IPSS-R Risk Group	Points	% of Patients	Median survival, years	Time to 25% with AML, years
Very low	≤1.5	19%	8.8	Not reached
Low	>1.5-3	38%	5.3	10.8
Intermediate	>3-4.5	20%	3	3.2
High	>4.5-6	13%	1.6	1.4
Very High	>6	10%	0.8	0.73

Greenberg et al. *Blood.* 2012:120:2454-65.

Revised IPSS (IPSS-R)

Risk group	Included karyotypes (19 categories)	Median survival, months	Proportion of patients in this group
Very good	del(11q), -Y	60.8	2.9%
Good	Normal, del(20q), del(5q) alone or with 1 other anomaly, del(12p)	48.6	65.7%
Intermediate	+8, del(7q), i(17q), +19, +21, any single or double abnormality not listed, two or more independent clones	26.1	19.2%
Poor	der(3q), -7, double with del(7q), complex with 3 abnormalities	15.8	5.4%
Very poor	Complex with > 3 abnormalities	5.9	6.8%

Parameter	Categories and Associated Scores					
Cytogenetic	Very good	Good	Intermediate	Poor	Very Poor	
risk group	0	1	2	3	4	
Marrow blast	≤ 2%	> 2% - < 5%	5% - 10%	> 10%		
proportion	0	1	2	3		
Hemoglobin	≥ 10	8 - < 10	< 8			
(g/dL)	0	1	1.5			
Platelet count	≥ 100	50 - < 100	< 50			
(x 10 ⁹ /L)	0	0.5	1			
Abs. neutrophil	≥ 0.8	< 0.8				
count (x 10 ⁹ /L)	0	0.5				

Risk group	Points	% of Patients	Median survival, years	Time until 25% of patients develop AML, years
Very low	≤ 1.5	19 %	8.8	Not reached
Low	> 1.5 - 3	38 %	5.3	10.8
Intermediate	> 3 - 4.5	20 %	3.0	3.2
High	> 4.5 - 6	13 %	1.6	1.4
Very High	> 6	10 %	0.8	0.73

- Considers only UNTREATED patients
- IPSS-R does not consider somatic mutations
- Somatic mutations are common in MDS
- Several mutated genes have prognostic significance independent of the IPSS-R

LOWER Risk ≤3.5 **HIGHER** Risk >3.5

Impact of Adverse Somatic Mutations on IPSS-R

Bejar R. *Haematologica*. 2014 Jun;99(6):956-64.

Most Frequently Mutated MDS Genes

Molecular Genetic Risk Stratification with the IPSS-M

How I risk stratify patients with MDS

International Working Group for the Prognosis of MDS (IWG-PM)

Study objective: Integrate gene mutations into the International Prognostic Scoring System (IPSS/IPSS-R)

IWG cohort (discovery)

Japan cohort (validation)

n=2,957

n=754

Slides courtesy of Dr. Elsa Bernard

Mutations in the IPSS-M cohort

Molecular characterization: Conventional cytogenetics | Oncogenic mutations from 152 genes (VAF>2%)

Dense copy number probes and SNP baits to capture aUPD/CN-LOH

- 48 genes mutated in >1% of patients.
- 94% of patients had at least one oncogenic lesion.
- Median 4 lesions per patient (range 0-20).

enes (VAF>2%) N-LOH

Considers Gene-Gene Interactions

SF3B1 mutations were associated with favorable outcomes.

But this association was modulated by its pattern of co-mutations.

1. *SF3B1^{5q}* (7%)

Concomitant isolated del(5q)

2. SF3B1^β (15%)

Co-occurrence of mutations in *BCOR*, *BCORL1*, *RUNX1*, *NRAS*, *STAG2*, *SRSF2*

3. *SF3B1*^α (78%) Any other *SF3B1* mutations.

Malcovati et al. Blood 2011;2015;2021 Meggendorfer et al. Haematologica 2017 Malcovati et al. Blood. 2020 Jul 9;136(2):157-170.

Molecular IPSS (IPSS-M)

Model fit with a robust Cox multivariable regression adjusted for confounder variables

Category	Variable	Multivariable m hazard ratio [#] (9	odel: 5% Cl)	Weight w	Scaling x ^{mean}
confounder	Fia Age, in years		1.23 (1.05 - 1.43)	N/A	N/A
	Sex:Male		1.22 (1.06 - 1.41)	N/A	N/A
	Type:Secondary/Therapy-related	+	1.36 (1.10 - 1.68)	N/A	N/A
clinical	% Bone Marrow Blasts, in %		1.42 (1.30 - 1.55)	0.352	0.922
	Yrae min(Platelets,250), in x10 ⁹ /L	N.	0.80 (0.72 - 0.89)	-0.222	1.41
	Hemoglobin, in g/dL	4	0.84 (0.81 - 0.88)	-0.171	9.87
cytogenetics	IPSS-R category vector ^a		1.33 (1.21 - 1.47)	0.287	1.390
gene main effects	TP53 ^{multi}	-	3.27 (2.38 - 4.48)	1.18	0.0710
17 variables, 16 genes	MLLPTD		2.22 (1.49 - 3.32)	0.798	0.0247
	FLT3ITD+TKD		2.22 (1.11 - 4.45)	0.798	0.0108
	SF3B1 ^{5q}		1.66 (1.03 - 2.66)	0.504	0.0166
	NPM1		1.54 (0.78 - 3.02)	0.430	0.0112
	RUNX1		1.53 (1.23 - 1.89)	0.423	0.126
	NRAS	-	1.52 (1.05 - 2.20)	0.417	0.0362
	ETV6		1.48 (0.98 - 2.23)	0.391	0.0216
	IDH2	_	1.46 (1.05 - 2.02)	0.379	0.0429
	CBL		1.34 (0.99 - 1.82)	0.295	0.0473
	EZH2	1000	1.31 (0.98 - 1.75)	0.270	0.0588
	U2AF1	144	1.28 (1.01 - 1.61)	0.247	0.0866
	SRSF2	-	1.27 (1.03 - 1.56)	0.239	0.158
	DNMT3A	-	1.25 (1.02 - 1.53)	0.221	0.161
	ASXL1	-	1.24 (1.02 - 1.51)	0.213	0.252
	KRAS		1.22 (0.84 - 1.77)	0.202	0.0271
	SF3B1º	-	0.92 (0.74 - 1.16)	-0.0794	0.186
gene residuals ⁵	min(Nres,2)	1	1.26 (1.12 - 1.42)	0.231	0.388
1 variable, 15 genes	Possible values are 0,1 or 2	0.5 1 2 3 5			

Adjusted for confounder variables ← Age, sex, MDS type (primary, therapy-related) Included in the fit but not in the score

Continuous clinical parameters Marrow blasts, platelets, hemoglobin

IPSS-R cytogenetic categories Unchanged in the IPSS-M

17 genetic variables from 16 main effect genes Individual weights attributed to each variable

1 genetic variable from **15** residual genes Number of mutated genes (0, 1 or 2)

IPSS-M Risk Categories

A six-category risk schema

Very Low Low Moderate Low Moderate High Very High **Prognostic separation of the IPSS-M risk categories**

Mapping from the IPSS-R to the IPSS-M

Improved prognostic discrimination

Extensive patient re-stratification

Validation in Japanese Cohort \rightarrow

Five points increase in concordance index from IPSS-R to IPSS-M across all endpoints

46% (n=1,223) of patients were re-stratified

7% (n=196) of patients were re-stratified by more than one strata

IPSS-M Risk Categories

Very Low | Low | Moderate Low | Moderate High | High | Very High

A point change of +1 implies a doubling of prognostic risk

Negative scores are LOWER RISK

Positive scores are HIGHER RISK

IPSS-M Calculator

https://mds-risk-model.com/

= Menu ∧ CLINICAL DATA

*Bone Marrow Blasts	
Percentage	[0-30%]
*Hemoglobin	
g/dL Change	[4-20 g/dL]
*Platelet Count	
1e9/L	[0-2000 te9/L]
0PTION	[0-2000 le9/L]
0PTION/ Absolute Neutrophil Co 1e9/L	[0-2000 le9/L] AL IPSS-R DATA Frunt [0-15 le9/L]
OPTION. Absolute Neutrophil Co 1e8/L Age	[0-2000 le9/L] AL IPSS-R DATA Punt [0-15 le9/L]

✓ CYTOGENETICS

✓ MOLECULAR DATA

Calcu

Auto update

	🗮 Menu			🗮 Menu					
	V CLINICAL DAT	A			AL DATA			Ť	
	∽ CYTOGENETICS			✓ CYTOGENETICS					
[0-30%]	*Presence of		~ MOLECULAR DATA						
	del(5q)	No	Yes	*Number of	TP53 mutati	ons			
[4-20 g/dL]	-7/del(7q)	No	Yes	Mutation	0	1	2+		
	-17/del(17p)	No	Yes						
[0-2000 le9/L]	Complex Karyoptype	No	Yes	"Loss of het (if known)	erozygosity	at TP53 locu	s		
SS-R DATA	*Cytogenetics Cate	gory		TP53 LOH	No	Yes	N/A	1	
-	Very Good	-Y, del(11q).		*MLL (KMT2	A) and FLT3	Mutations			
[0-15 1e9/L]	Good	Normal, del(5q) del(20q), double del(5q)	, del(12p), e including	MLL PTD	No	Yes	Not Assessed		
[18-120 years]	Citerrate:	del(7q), +8, +19,	((17g), any other	FLT3 ITD or TKD	No	Yes	Not Assessed		
	Intermediate	single or double independent clones.		*Genes (individual weights)					
	Poor	-7, inv(3)/t(3q)/d including -7/del abnormalities.	iel(3q), double (7q), Complex: 3	ASXLI	Non-mutated	Mutated	Not Assessed		
	Very Poor	Complex; > 3 ab	mormalities	CBL	Non-mutated	Mutated	Not Assessed		
				DNMT3A	Non-mutated	Mutated	Not Assessed		
	~ MOLECULAR	DATA		ETV6	Non-mutated	Mutated	Not Assessed		
				EZH2	Non-mutated	Mutated	Not Assessed		
				IDH2	Non-mutated	Mutated	Not Assessed		
				KRAS	Non-mutated	Mutated	Not Assessed		
				NPMI	Non-mutated	Mutated	Not Assessed		
				NRAS	Non-mutated	Mutated	Not Assessed		
				RUNX1	Non-mutated	Mutated	Not Assessed		
				SF3B1	Non-mutated	Mutated	Not Assessed		
				SRSF2	Non-mutated	Mutated	Not Assessed		
				UZAFI	Non-mutated	Mutated	Not Assessed	-	
ate Risk		Calculate Risk			¢ Ca	lculate Risk			
C Reset Values	Auto update	Q R	eset Values	Auto update	Û	C Re	set Values		

🔅 IPSS-M Risk Calculator ✓ PATIENT SUMMARY STRATIFICATION RESULTS IPSS-M Score: IPSS-R Score: 0.88 HIGH 4.50 INT Leukemia-Free Survival (IPSS-M): Overall Survival (IPSS-M): 1.5 years median 1.7 years median 0.8-2.8 years, 25%-75% range 1-3.4 years, 25%-75% range **Risk Stratification** Graph Table Hazard Ratio (from average patient) 0.25 0.5 0.5 0.4 0.3 å Patient Score 0.2 0.88 HIGH 0.1 -2 -T 0 1 2 **IPSS-M** Score

IPSS- 4.5	R Score (Age-	adjusted):
AML Transform	mation (iPSS-	M]:
14.3% b 29.2% by 4 yea	iy 1 year ars	
Clinical	Outcomes	
		Moderate Low 11% Moderate High 11% High 14%
	- 1	very nign 17%
		the average patient.
		Hazarotatio tor Ink of APL-tor beach from the average batient. Bernard E., Tuechler H. Greenbarg PL, et al. The Holecular International Prognasts Scottian system (IPSS-M) for risk statification in myletogysolastic syndromes. New Eng J Hed Evidence. 17). doi:10.1056/wdoa5200008 Study supported by the MDS Foundation.

https://mds-risk-model.com/

= Menu

∧ CLINICAL DATA	
*Bone Marrow Blasts	
Percentage	[0-30%]
*Hemoglobin	
g/dL Change	[4-20 g/dL]
*Platelet Count	
1e9/L	[0-2000 le9/L]
OPTION	AL IPSS-R DATA
Absolute Neutrophil Co	ount
1e9/L	[0-15 1e9/L]
Age	
Years	[18-120 years]

✓ CYTOGENETIC

V MOLECULAR D

Auto update

		🗮 Menu			🗮 Menu				
A		✓ CLINICAL DATA			✓ CLINICAL DATA				
s		~ CYTOGENETICS			✓ CYTOGENETICS				1
	[0-30%]	*Presence of			~ MOLECULAR DATA				1
		del(5q)	No	Yes	*Number of	TP53 mutation	15		
	[4-20 g/dL]	-7/del(7q)	No	Yes	Mutation	0	1	2+	
		-17/del(17p)	No	Yes	count				
	[0-2000 1e9/L]	Complex Karyoptype	No	Yes	"Loss of het (if known)	erozygosity at	TP53 locu	15	
ONAL IPS	S-R DATA	*Cytogenetics Cate	gory		TP53 LOH	No	Yes	N/A	
l Count		Very Good	-Y, del(11q).		*MLL (KMT2	A) and FLT3 M	utations		
	[0-15 1e9/L]	Good	Normal, del(5q del(20q), doubl), del(12p), le including	MLL PTD	No	Yes	Not Assessed	
	[18-120 years]	C. Landala	del(7q), +8, +19,	, i(17g), any other	FLT3 ITD or TKD	No	Yes	Not Assessed	
		Intermediate single or double independent clones.		"Genes (individual weights)					
S		Poor	-7, inv(3)/t(3q)/ including-7/de	del(3q), double N(7q), Complex: 3	ASXLI	Non-mutated	Mutated	Not Assessed	
DATA					CBL	Non-mutated	Mutated	Not Assessed	
		Very Poor	Complex: > 3 a	phormalities	DNMT3A	Non-mutated	Mutated	Not Assessed	
		V MOLECULAR	DATA		ETV6	Non-mutated	Mutated	Not Assessed	
					EZH2	Non-mutated	Mutated	Not Assessed	
					IDH2	Non-mutated	Mutated	Not Assessed	
					KRAS	Non-mutated	Mutated	Not Assessed	
					NPMI	Non-mutated	Mutated	Not Assessed	
					NRAS	Non-mutated	Mutated	Not Assessed	
					RUNX1	Non-mutated	Mutated	Not Assessed	
					SF3B1	Non-mutated	Mutated	Not Assessed	
					SRSF2	Non-mutated	Mutated	Not Assessed	
					UZAFI	Non-mutated	Mutated	Not Assessed	
Calculat	te Risk	4	Calculate Ris	k		ϕ Calc	ulate Risk	P	
	C Reset Values	Auto update	Q F	Reset Values	Auto update		C Re	eset Values	

S-M Risk Calculator
4.50
Overall Survival (IPSS-M): 1.7 years median 1-3.4 years, 25%-75% range
By IPSS-M By IPSS-R Leukemia-Free Survival
ery Low Low Moderate Low Moderate High High Ver

What if there are missing data?

Patient profile Patient-specific risk score & risk category Myelodysplastic Syndrome (MDS) Stratification Results **Risk Calculator Model IPSS-M Score: IPSS-R Score:** 0.22 | Moderate High 3.00 | Low Input Patient Data 0.13 | Moderate High (best), 0.57 | High (worst) Endpoints Cytogenetics Molecular Data Leukemia-Free Survival (IPSS-M) Overall Survival (IPSS-M) Non-mutated Mutated Not Assessed 2.3 years median 2.8 years median Non-mutated Mutated Not Assessed Hazard ratio (from average patient) Non-mutated Mutated Not Assessed 0.25 0.5 Non-mutated Mutated Not Assessed VL MH H ML L Non-mutated Mutated Not Assessed 14% 33% 11% 11% 14% Non-mutated Mutated Not Assessed 0.4 Non-mutated Mutated Not Assessed Non-mutated Mutated Not Assessed Non-mutated Mutated Not Assessed 0.3 Mutated Non-mutated Not Assessed Density Non-mutated Mutated Not Assessed 0.22 * Genes (number of residual mutations) 0.2 Non-mutated Mutated Not Assessed Non-mutated Mutated Not Assessed 0.1 Non-mutated Mutated Not Assessed Non-mutated Mutated Not Assessed Mutated Non-mutated Not Assessed -2 -1 0 Page 3/3 **IPSS-M Score Calculate Risk Range of score**

Missing data

Clinical Data

DNMT3A

ETV6

EZH2

IDH2

KRAS

NPM1

NRAS

RUNX1

SF3B1

SRSF2

U2AF1

BCOR

BCORL1

CEBPA

ETNK1

GATA2

K Back 2/3

Reset Values

VH

17%

\$

IPSS-R Score (Age-adjusted): 3.07 | Intermediate

AML Transformation (IPSS-M) 9.5% by 1 year

MDS Summary

- MDS are a broad range of bone marrow diseases caused by gene mutations that affect how blood cells grow and mature
- MDS can be very mild and slowly progressive or more severe and rapidly changing with an increased risk of becoming AML
- The IPSS-M is a new tool that helps predict MDS risk and can guide the timing and choice of therapy
- Knowing your MDS subtype, gene mutations, and risk group is key to understanding your treatment options and prognosis

Hematology at UC San Diego

MDS Center of Excellence at UC San Diego

Marla McArdle Jennifer Galvan **Michelle Don Edward Ball Tiffany Tanaka Carolyn Mulroney Fotis Asimakopoulos Aaron Goodman Avad Hamdan Sandy Shattil Catriona Jamieson Erin Reid Benjamin Heyman Srila Gopal Anthony Nguyen** Jenny Zhou

Rosie Tan Olivia Reynolds Huanyou Wang James Mangan Divya Koura Caitlin Costello Dimitri Tzachanis Dan Kauffman **Autumn Jeong** John Adamson - Hematology Group Michael Choi **Tom Kipps Annette Von Drygalski** William Pearse **Amanda Kagan**

- Bejar Clinic/Lab
- Hematopathology
- BMT Group

All of our PATIENTS and INFUSION CENTER nurses and staff!

LEUKEMIA & LYMPHOMA **SOCIETY**° fighting blood cancers

MDS CENTERS OF EXCELLENCE