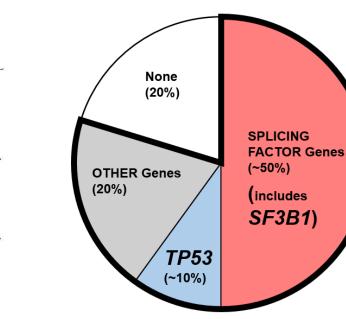

How Do We Treat MDS?

MDS Foundation MDS Patient & Family Forum Agenda

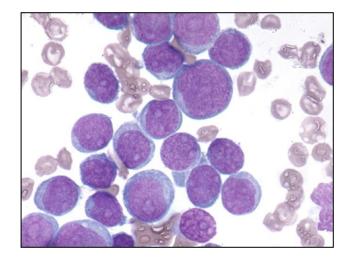
May 11, 2024

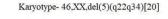
Meagan Jacoby, MD/PhD Associate Professor of Medicine

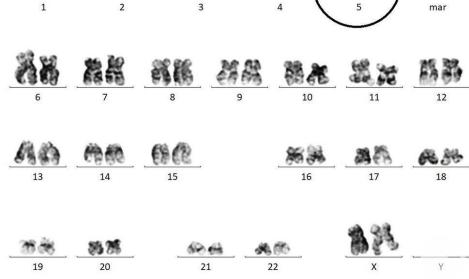
Clinical Director Of MDS Program, Division of Oncology, Washington University School of Medicine


How do we decide on therapy?

- WHO classification (blasts, cytogenetics, gene mutations)
- Low-risk or high-risk disease: IPSS Prognostic Score
- Need for upfront treatment versus watchful waiting
- Availability of therapies and clinical trials
- Medical co-morbidities of patients
- Shared decision making of patient and physician


How is MDS Classified?


Cytogenetics


Gene Mutations

Blasts

9 Ø

Copyright © 2019 American Society of Hematology.

How is MDS Classified?

WHO 2022 Classification of Myelodysplastic Neoplasms (MDS)

Table 3. Classification and defining features of myelodysplastic neoplasms (MDS).

	Blasts	Cytogenetics	Mutations
MDS with defining genetic abnormalities			
MDS with low blasts and isolated 5q deletion (MDS-5q)	<5% BM and <2% PB	5q deletion alone, or with 1 other abnormality other than monosomy 7 or 7q deletion	
MDS with low blasts and SF3B1 mutation ^a (MDS-SF3B1)		Absence of 5q deletion, monosomy 7, or complex karyotype	SF3B1
MDS with biallelic <i>TP53</i> inactivation (MDS-bi <i>TP53</i>)	<20% BM and PB	Usually complex	Two or more <i>TP53</i> mutations, or 1 mutation with evidence of <i>TP53</i> copy number loss or cnLOH
MDS, morphologically defined			
MDS with low blasts (MDS-LB)	<5% BM and <2% PB		
MDS, hypoplastic ^b (MDS-h)			
MDS with increased blasts (MDS-IB)			
MDS-IB1	5-9% BM or 2-4% PB		
MDS-IB2	10-19% BM or 5–19% PB or Auer rods		
MDS with fibrosis (MDS-f)	5-19% BM; 2-19% PB		

^aDetection of ≥15% ring sideroblasts may substitute for SF3B1 mutation. Acceptable related terminology: MDS with low blasts and ring sideroblasts.

^bBy definition, ≤25% bone marrow cellularity, age adjusted.

BM bone marrow, PB peripheral blood, cnLOH copy neutral loss of heterozygosity.

WHO 2022 Classification of Myelodysplastic Neoplasms (MDS)

÷	
	Blasts
n defining genetic lities	
ith low blasts and isolated etion (MDS-5q)	<5% BM and <2% PB
ith low blasts and SF3B1 on ^a (MDS-SF3B1)	
ith biallelic <i>TP53</i> inactivation i <i>TP53</i>)	<20% BM and PB
rphologically defined	
ith low blasts (MDS-LB)	<5% BM and <2% PB
ypoplastic ^b (MDS-h)	
ith increased blasts (MDS-IB)	
MDS-IB1	5-9% BM or 2-4% PB
MDS-IB2	10-19% BM or 5-19%
MD 3-102	PB or Auer rods
	lities ith low blasts and isolated etion (MDS-5q) ith low blasts and <i>SF3B1</i> on ^a (MDS- <i>SF3B1</i>) ith biallelic <i>TP53</i> inactivation i <i>TP53</i>) rphologically defined ith low blasts (MDS-LB) ypoplastic ^b (MDS-h) ith increased blasts (MDS-IB) MDS-IB1

Merge MDS-IB2 with AML?

- "MDS-IB2 may be regarded as AMLequivalent for therapeutic considerations and clinical trial design"
- International Consensus Classification (ICC) uses a new MDS/AML category for MDS-EB2

https://doi.org/10.1182/blood.2022015850

What is my prognosis? Revised International Prognostic Scoring System (IPSS-R)

Prognostic	Score						
variable	0	0.5	1.0	1.5	2.0	3.0	4.0
Cytogenetics*	Very good		Good		Intermed	Poor	Very poor
Bone marrow blast (percent)	≤2		>2 to <5		5 to 10	>10	
Hemoglobin (g/dL)	≥10		8 to <10	<8			
Platelets (cells/microL)	≥100	50 to 100	<50				
ANC	≥0.8	<0.8					

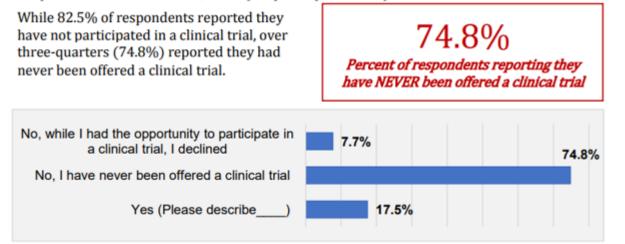
Risk group	IPSS-R score	Median OS (years)	Time to 25% AML (years)	
Very low	≤1.5	8.8	>14.5	
Low	>1.5 to 3.0	5.3	10.8	
Intermediate	>3 to 4.5	3.0	3.2	
High	>4.5 to 6	1.6	1.4	
Very high	>6	0.8	0.7	

Very good: -Y, del(11q).
Good: Normal, del(5q), del(12p), del(20q), double including del(5q).
Intermediate: del(7q), +8, +19, i(17q), any other single or double ind clones
Poor: -7, inv(3)/t(3q)/del(3q), double including -7/del(7q), complex: 3 abn
Very poor: Complex: >3 abnormalities

Have any updates been made to scoring systems to incorporate more gene mutations?

IPSS-M Calculation https://mds-risk-model.com/

So which treatment is right for me?


- Shared decision making based on symptoms, risk-stratification, and patient age/medical issues
- Clinical trial participation

MDS Alliance MDS Global Patient Survey 2022

Clinical Trial Awareness

Participation in Clinical Trials (N = 610)

Respondents were also asked, "Have you participated in any clinical trials?"

Data collected by the MDS Alliance. https://www.mds-alliance.org/the-mds-global-patient-survey-2022/

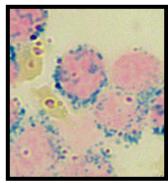
key provider takeaways from the 2022 MDSA Global Survey, Ashley Moncrief, Director of Patient care, MDS Foundation, Inc

Patient #1

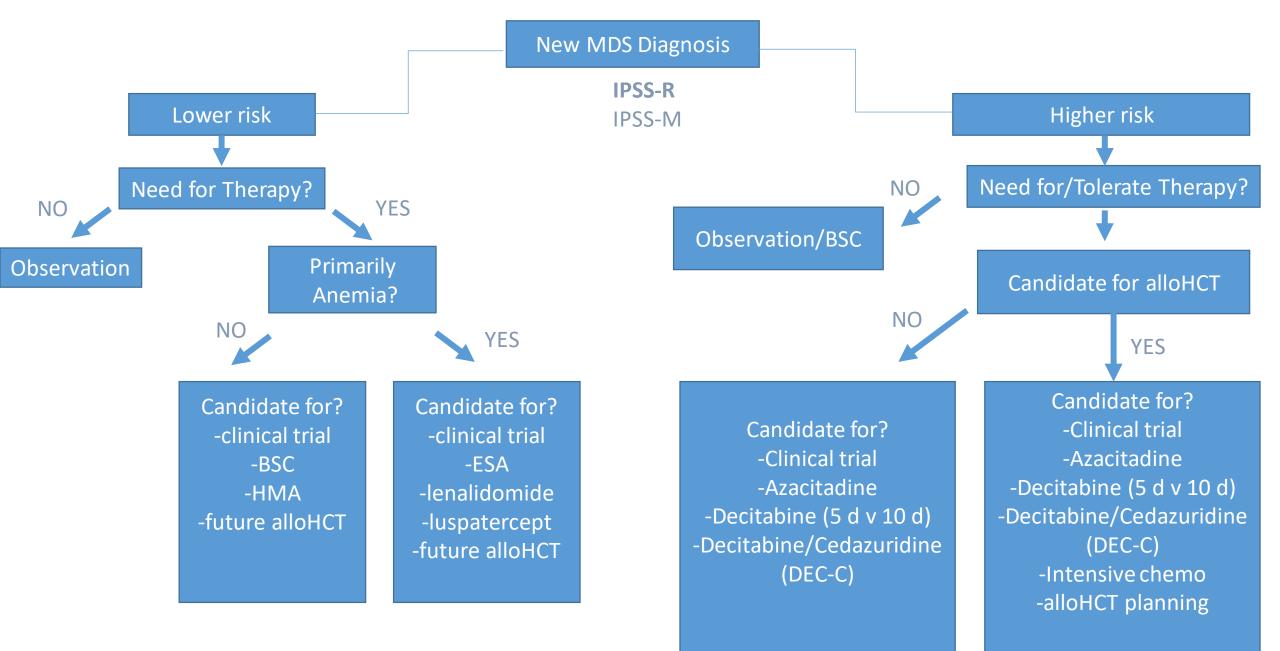
- 66 y/o man presented with fatigue and SOB
- **PE** = normal
- **CBC** = WBC 5.1, hemoglobin 8.1 (ANC 3.6), platelets 278K
- **BM bx** = hypercellular marrow with erythroid and megakaryocytic dysplasia, ring sideroblasts, no increase in blasts
- Cytogenetics: 46XY[20]
- Next Gen Sequencing: SF3B1 K700E VAF 39%
- WHO diagnosis : MDS with SF3B1
- IPSS-R ?
- Treatment ?

Patient #2

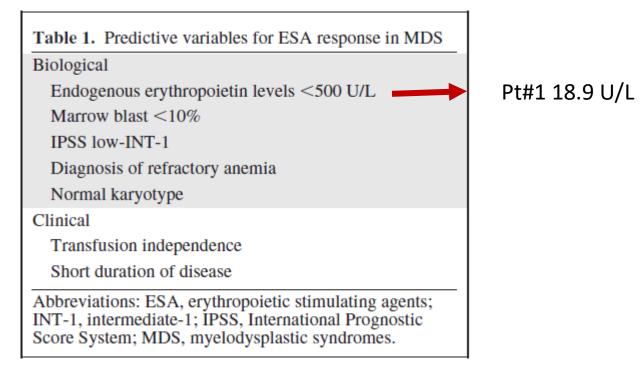
- 60 y/o man who has abnormal CBC and history of chemotherapy for another cancer
- **PE** =normal
- **CBC** = WBC 1.5, hemoglobin 7.8 (ANC 0.8), platelets 141K
- BM bx = multilineage dyspoiesis and 7% myeloblasts
- Cytogenetics: 45,XY,t(2;20)(q11.2;p13),del(5)(q13 q33),-7
- Next Gen Sequencing: TP53 K132E VAF 65%
- WHO diagnosis ? = MDS-biTP53 (*MDS EB-1*)
- IPSS-R ?
- Treatment ?

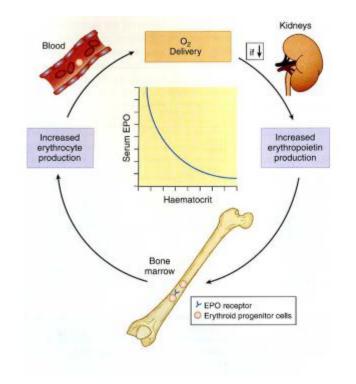

Risk Group and Survival Predictions for Pt #1

Prognostic				Score			
variable	0	0.5	1.0	1.5	2.0	3.0	4.0
Cytogenetics*	Very good		Good		Intermed	Poor	Very poor
Bone marrow blast (percent)	≤2		>2 to <5		5 to 10	>10	
Hemoglobin (g/dL)	≥10		8 to <10	<8			
Platelets (cells/microL)	≥100	50 to 100	<50				
ANC	≥0.8	<0.8					

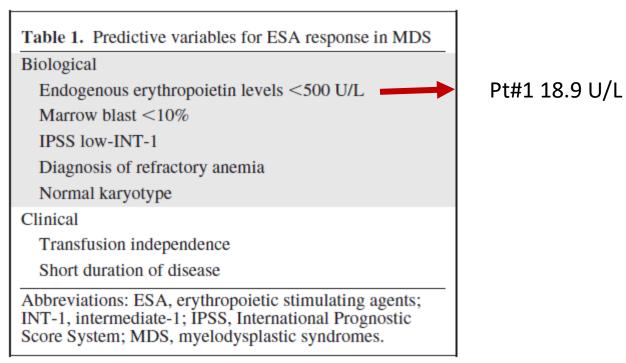

Risk group	IPSS-R score	Median OS (years)	Time to 25% AML (years)	
Very low	≤1.5	8.8	>14.5	
Low	>1.5 to 3.0	5.3	10.8	
Intermediate	>3 to 4.5	3.0	3.2	
High	>4.5 to 6	1.6	1.4	
Very high	>6	0.8	0.7	

Very good: -Y, del(11q).
Good: Normal, del(5q), del(12p), del(20q), double including del(5q).
Intermediate: del(7q), +8, +19, i(17q), any other single or double ind clones
Poor: -7, inv(3)/t(3q)/del(3q), double including -7/del(7q), complex: 3 abn
Very poor: Complex: >3 abnormalities


Ring Sideroblasts


SF3B1 mutation

Treatment: Erythropoietin for symptomatic anemia in MDS



The Oncologist 2011;16(suppl 3):35-42 www.TheOncologist.com

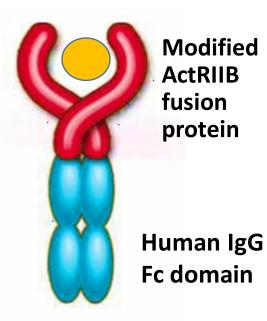
Ludwig H. Semin Oncol. 2002;29(3 suppl 8):45-54. Hellström-Lindberg E. Br J Haematol. 1995;89:67-71. Casadevall N, et al. Blood. 2004;104:321-327. Park S. Br. J. Hematology 2016;174:730. Park S, et al. Br. J Hematology 2019;184:134.

Treatment: Erythropoietin for symptomatic anemia in MDS

The Oncologist 2011;16(suppl 3):35-42 www.TheOncologist.com

Response rates 45-73%

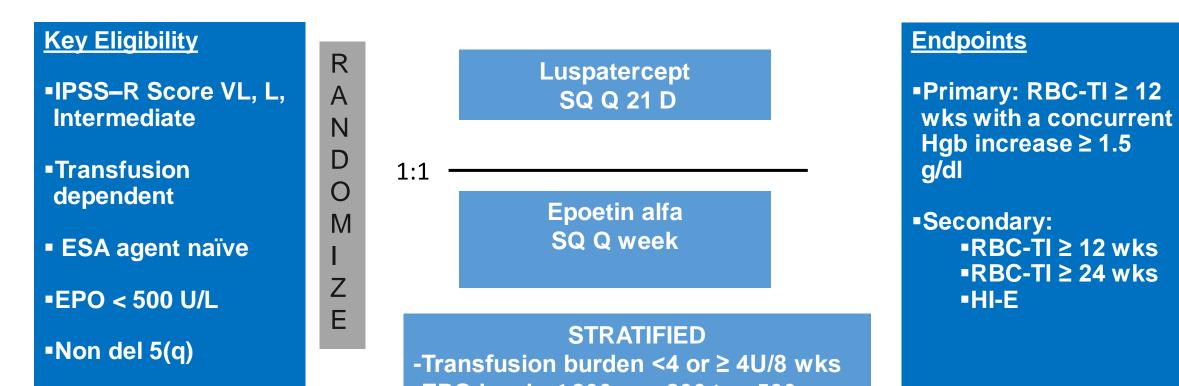
Median time to response 5 weeks (4-9)


Duration of response 8-48 months

Ludwig H. Semin Oncol. 2002;29(3 suppl 8):45-54. Hellström-Lindberg E. Br J Haematol. 1995;89:67-71. Casadevall N, et al. Blood. 2004;104:321-327. Park S. Br. J. Hematology 2016;174:730. Park S, et al. Br. J Hematology 2019;184:134.

Luspatercept for lower-risk MDS

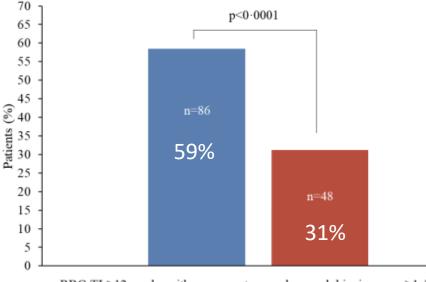
LUSPATERCEPT


TGF-B superfamily ligand

Soluble "Cytokine sink" to prevent signaling at cell surface

- "Ligand trap" binds TGF beta ligands and modulates TGF beta signaling pathway
- Targets late stage erythropoiesis
- "First in class maturation agent" (EMA)
- Approved in April 2020 for LR-MDS patients with RS who are transfusion dependent and refractory to ESA therapy
- COMMANDS: First study in ESA-naïve LR-MDS pts to compare ESA to investigational therapy for transfusion dependent anemia in upfront therapy

COMMANDS Trial



-EPO levels ≤ 200 vs <200 to <500
-Ringed sideroblasts (pos vs neg)

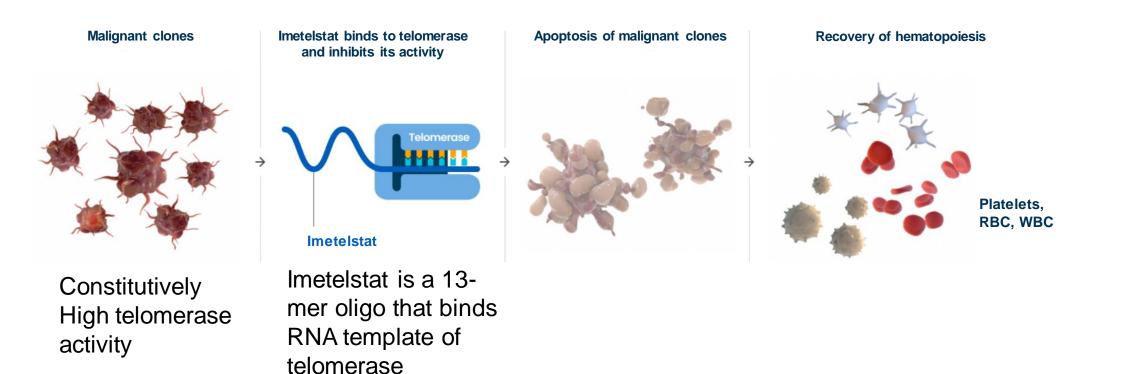
COMMANDS Trial Interim Analysis

Primary Endpoint

RBC-TI \geq 12 weeks with concurrent mean haemoglobin increase \geq 1.5 g/dL (weeks 1–24)

- Median duration of TI was 127 weeks vs 77 weeks, respectively p=0.005
- Received FDA approval in August 2023

Lancet 2023; 402: 373-85

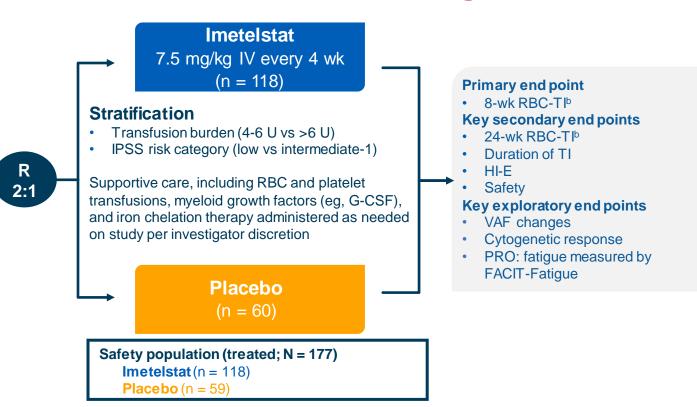

Patient #1

- 66 y/o man presented with fatigue and SOB
- **PE** = normal
- **CBC** = WBC 5.1, hemoglobin 8.1 (ANC 3.6), platelets 278K
- **BM bx** = hypercellular marrow with erythroid and megakaryocytic dysplasia, ring sideroblasts, no increase in blasts
- Cytogenetics: 46XY[20]
- Next Gen Sequencing: SF3B1
 K700E VAF 39%
- WHO diagnosis : MDS with SF3B1
- IPSS-R low risk
- Treatment: luspatercept

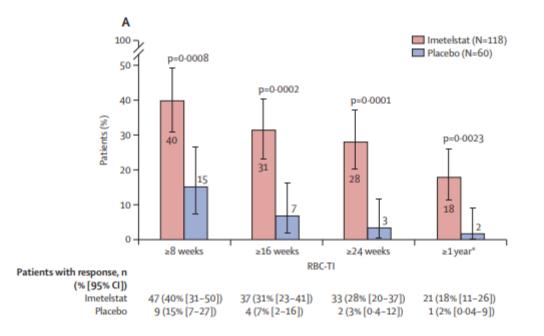
Patient #2

- 60 y/o man who has abnormal CBC and history of chemotherapy for another cancer
- **PE** =normal
- **CBC** = WBC 1.5, hemoglobin 7.8 (ANC 0.8), platelets 141K
- BM bx = multilineage dyspoiesis and 7% myeloblasts
- Cytogenetics: 45,XY,t(2;20)(q11.2;p13),del(5)(q13 q33),-7
- Next Gen Sequencing: TP53 K132E VAF 65%
- WHO diagnosis ? = MDS-biTP53 (*MDS EB-1*)
- IPSS-R ?
- Treatment ?

Imetelstat in Lower Risk MDS



IMerge Phase 3 Trial Design


Phase 3 Double-blind, randomized 118 clinical sites in 17 countries

Patient population (ITT; N = 178)

- IPSS low-risk or intermediate-1–risk MDS
- R/R^a to ESA or EPO >500 mU/mL (ESA ineligible)
- Transfusion-dependent: ≥4 U RBCs/8 wk over 16 wk before study
- Non-del(5q)
- No prior treatment with lenalidomide or HMAs

Results

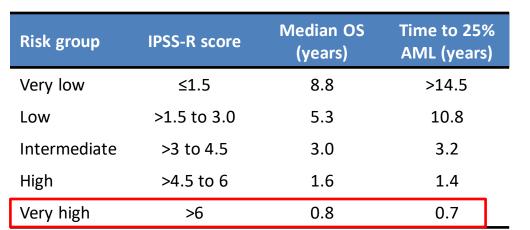
FDA ODAC Committee Votes In Favor of Benefit-Risk Profile of Imetelstat in Lower-Risk MDS

March 14, 2024

https://www.fda.gov/media/176966/download

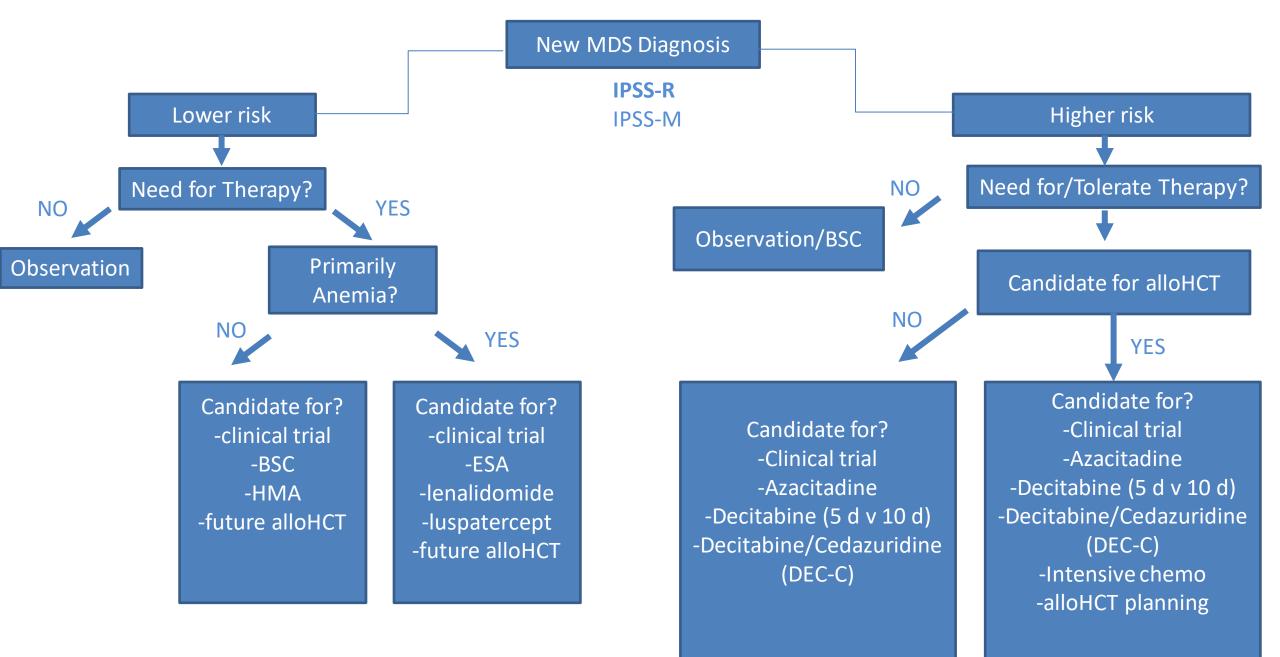
https://www.onclive.com/view/fda-odac-committee-votes-infavor-of-benefit-risk-profile-of-imetelstat-in-lower-risk-mds

Patient #1


- 66 y/o man presented with fatigue and SOB
- **PE** = normal
- **CBC** = WBC 5.1, hemoglobin 8.1 (ANC 3.6), platelets 278K
- **BM bx** = hypercellular marrow with erythroid and megakaryocytic dysplasia, ring sideroblasts, no increase in blasts
- **Cytogenetics**: 46XY[20]
- Next Gen Sequencing: SF3B1
 K700E VAF 39%
- WHO diagnosis : MDS with SF3B1
- IPSS-R low risk
- **Treatment**: luspatercept

Patient #2

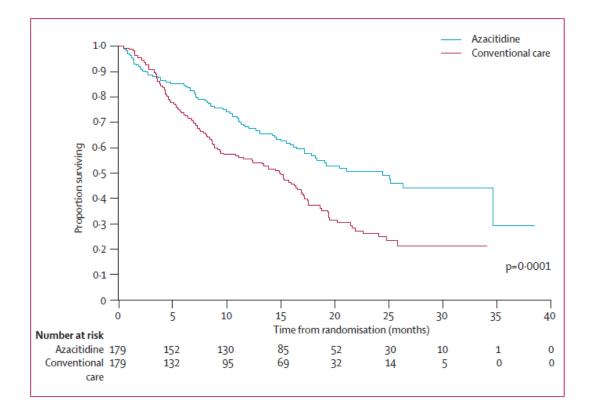
- 60 y/o man who has abnormal CBC and history of chemotherapy for another cancer
- **PE** =normal
- CBC = WBC 1.5, hemoglobin 7.8 (ANC 0.8), platelets 141K
- BM bx = multilineage dyspoiesis and 7% myeloblasts
- Cytogenetics: 45,XY,t(2;20)(q11.2;p13),del(5)(q13 q33),-7
- Next Gen Sequencing: TP53 K132E VAF 65%
- WHO diagnosis ? = MDS-biTP53 (MDS EB-1)
- IPSS-R ?
- Treatment ?


Revised International Prognostic Scoring System (IPSS-R) Pt #2

Prognostic	Score						
variable	0	0.5	1.0	1.5	2.0	3.0	4.0
Cytogenetics*	Very good		Good		Intermed	Poor	Very poor
Bone marrow blast (percent)	≤2		>2 to <5		5 to 10	>10	
Hemoglobin (g/dL)	≥10		8 to <10	<8			
Platelets (cells/microL)	≥100	50 to 100	<50				
ANC	≥0.8	<0.8					

Very good: -Y, del(11q).
Good: Normal, del(5q), del(12p), del(20q), double including del(5q).
Intermediate: del(7q), +8, +19, i(17q), any other single or double ind clones
Poor: -7, inv(3)/t(3q)/del(3q), double including -7/del(7q), complex: 3 abn
Very poor: Complex: >3 abnormalities

TP53 mutation



What Are Current Standard of Care Options?

- Hypomethylating agents:
 - Azacitadine 75 mg/m² X 7 days every 28 days
 - Decitabine 20 mg/m² X 5 days every 28 days
 - Decitabine 20 mg/m² X 10 days every 28 days (n engl j med 375;21)
- Oral decitabine and cedazuridine (DEC-C) recently FDA approved as a substitute for IV decitabine (Blood 2020 Aug 6;136(6):674-683)

DNA Hypomethylating Agents Improve Survival: AZA-001

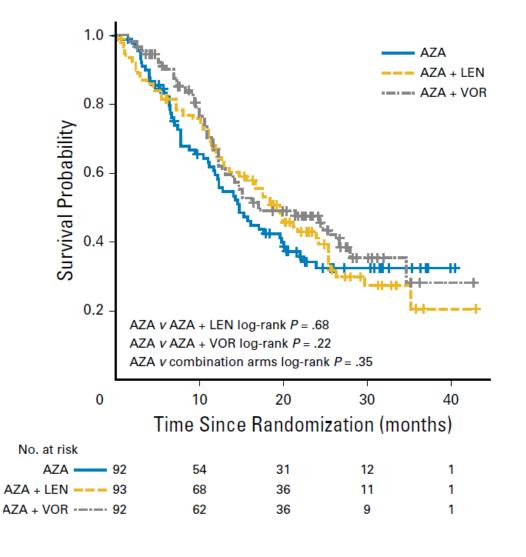
Azacitidine vs conventional care

- Median OS 24.5 vs 15 months
- Median time to AML 17.8 vs 11.5 mo

• Can we do better?

Azacitidine Responses in Select Major Trials and a Meta-Analysis

Endpoint	Fenaux (2009)	ltzykson (2011)	SWOG S1117 (2015)	Panther Sekeres (2021)	Review Garcia (2021)	Clinically Unmet Need
				Aza	Aza	Improving
	Aza n= 179	Aza n= 282	Aza n= 92	n =35 [#]	237 studies	•
median OS, months	24.5 (9.9-NR)	13.5	15	19.1	18.6 (15.3-21.9)	Response
median relapse free survival	NR	NR	6			and Survival
median progression free survival	*14.1 (IQR 4.2-27.6)	NR	NR	14 ##	12	over single
ORR (CR+PR+HI)	35%	38%	37%	57%		
ORR (CR+PR+ mCR + HI)	mCR NR	43%	NR	NR		agent
CR	17%	14%	24%	26.7%	17%	Azacitidine
PR	12%	3%	0	13%		
HI (Any, includes CR , PR, SD)	49%	NR	13%	17%		
mCR + HI	mCR NR	5.60%	NR	NR		
mCR, no HI	mCR NR	5.60%	NR	NR		
SD (both with and without HI)	42%	38%	NR	NR		
median time to AML	15.0 (8.8-27.6)	NR	NR			
median duration of response** (CR+PR+HI)	13.6,(IQR 5.9-26.4)	9.5	9.0	13.1		
*defined as median time to disease progression,r	elapse after CR or PR, or de	ath				
** CR+PR+HI (Fenaux, Sekeres 2021) or (CR + PR +	mCR + HI (Itzykson) ; # hig	her-risk MDS coł	nort			


only;^{##}event-free survival

NR, not reported

Fenaux et al. Lancet Oncology 2009; 10:223 Itzykson et al. Blood . 2011; 117:403. Sekeres, et al. Blood 2015;126:908

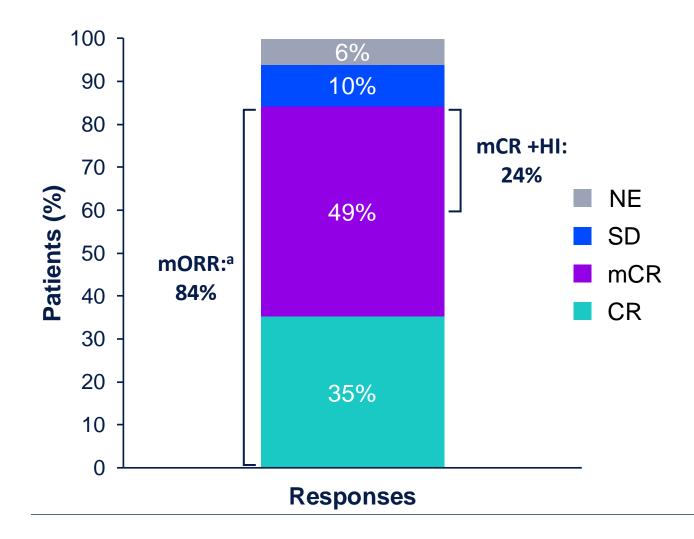
Sekeres, et al. Leukemia 2021;35:2119-2142 Garcia, et al. Leukemia Research .2021 104

Historically, Azacitadine "Doublets" Have Been Disappointing

Sekeres, et al. J Clin Oncol 2017;2745

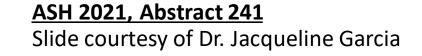
Clinically unmet need

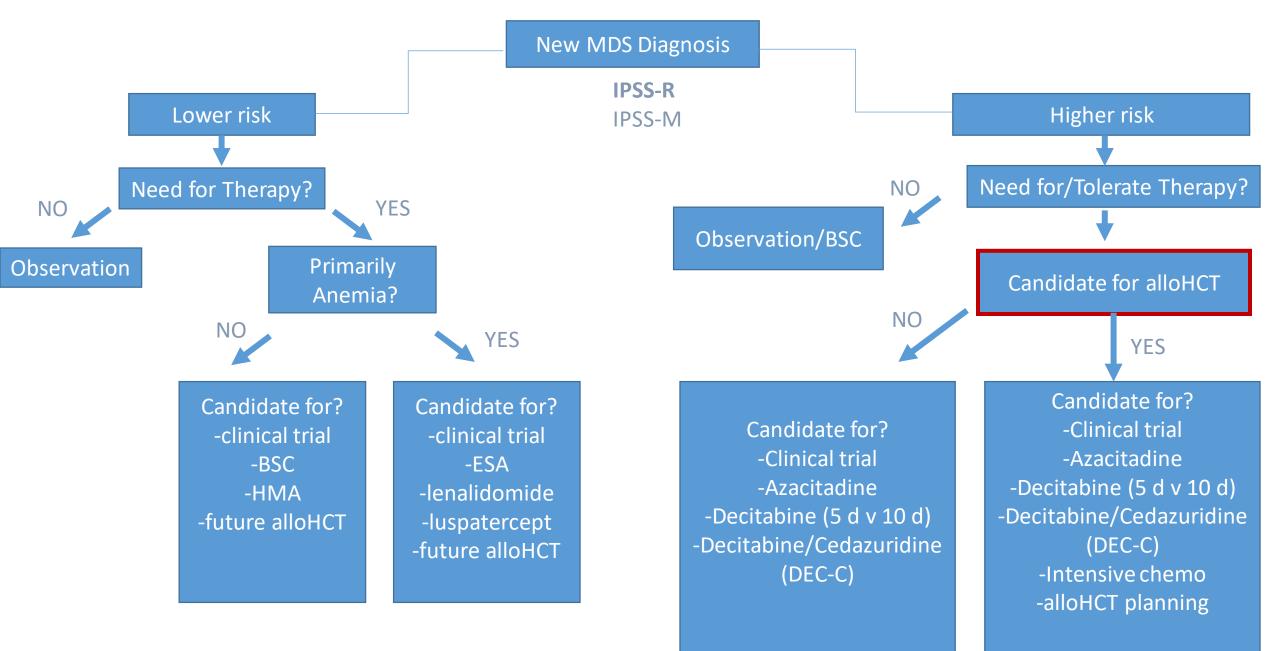
- Recent doublets with novel compounds have not met primary endpoints:
- APR-246 (acts on TP53)
- Pevonedistat (acts on ubiquitination)
- Magrolimab (CD47 macrophage checkpoint inhibitor
- Sabatolimab (immunomodulary)


https://ir.aprea.com/news-releases/news-release-details/aprea-therapeutics-announces-results-primary-endpoint-phase-3

Sekeres, et al. Leukemia 2021;35:2119-2142

P3 VERONA Study


- Phase 3 randomized, double-blind study of patients with treatment-naïve HR-MDS study of venetoclax with azacitidine to assess change in complete remission and overall survival (VERONA) (NCT04401748)
- Patients 1:1 to receive placebo or Ven 400 mg oral tablet once daily on Days 1-14, both in combination with Aza 75 mg/m2 (intravenous or subcutaneous) on Days 7-0-0 or Days 5-2-2 per 28-days
- Planned enrollment is approximately 500 patients, which began in 2020


Azacitidine + Venetoclax: Early Phase Data

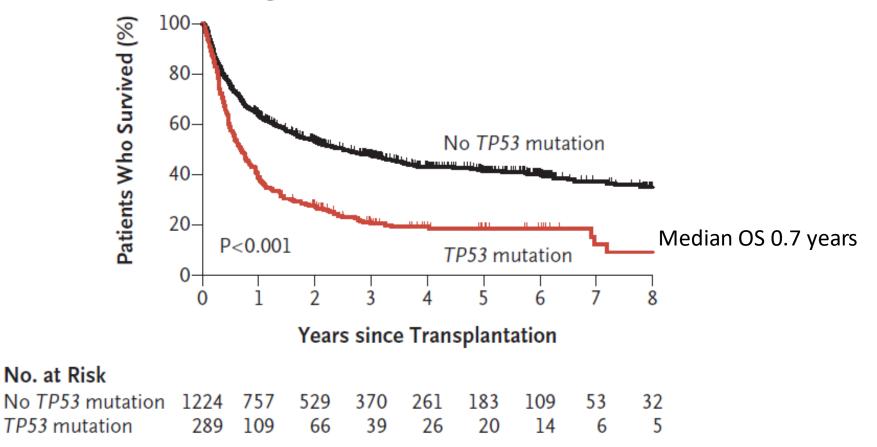
Median time to response:
0.9 months (95% Cl, 0.7–5.8)

Median duration of response:
12.4 months (95% Cl, 9.9–NR)

Fitness of Patient: HCT-Specific Comorbidity Score (HCT-CI) (Sorror Score)

Table 1. HCT-CI

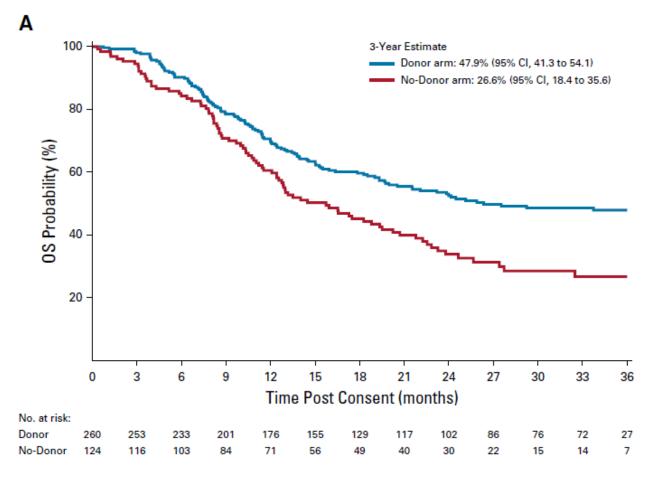
Comorbidities	HCT-CI scores
Arrhythmia	1
Cardiovascular comorbidity	1
Inflammatory bowel disease	1
Diabetes or steroid-induced hyperglycemia	1
Cerebrovascular disease	1
Psychiatric disorder	1
Mild hepatic comorbidity	1
Obesity	1
Infection	1
Rheumatologic comorbidity	2
Peptic ulcer	2
Renal comorbidity	2
Moderate pulmonary comorbidity	2
Prior malignancy	3
Heart valve disease	3
Moderate/severe hepatic comorbidity	3
Severe pulmonary comorbidity	3
	Total score =


NRM		NRM	
Score	Patients, %	HR [≛] (95% CI)	2-year, %
0	38	1	9
1	17	1.66 (0.9-3.1)	14
2	17	3.48 (2.0-6.0)	27
3	17	6.09 (3.7-10.1)	41
4 or more	11	6.93 (4.0-12.0)	43

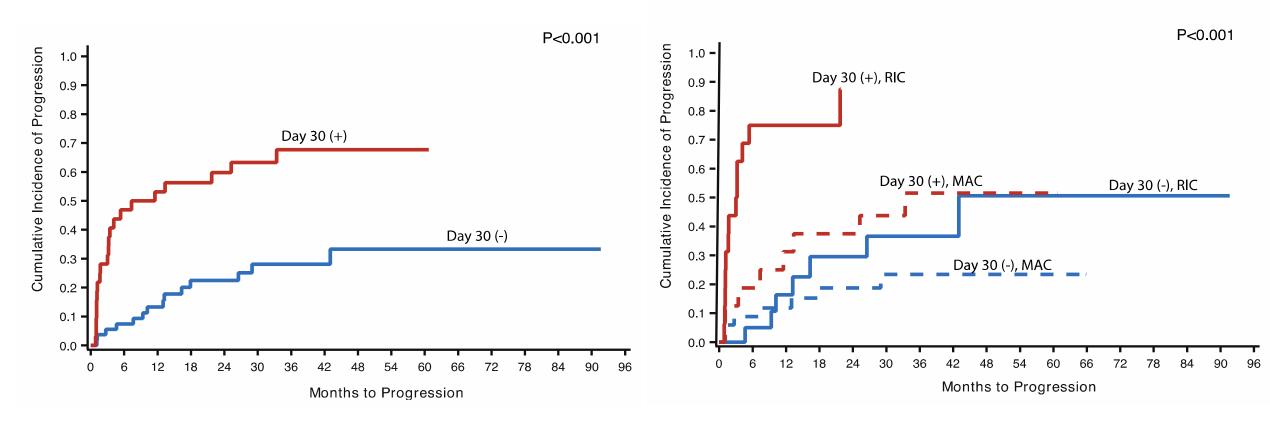
Blood. 2005;106(8):2912-2919.

http://www.hctci.org/

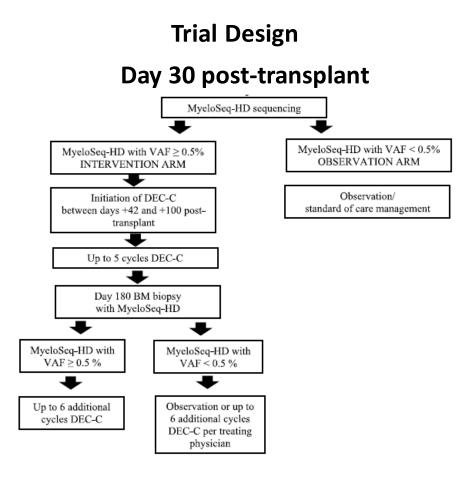
Biological characteristics of the disease: *TP53* Mutation Confers Poor Prognosis After Stem Cell Transplant


B Overall Survival, According to TP53 Mutation Status

Am I too old to get a transplant?


Survival advantage of allogeneic stem cell transplant in older patients: BMT CTN 1102

- Key eligibility:
 - Age 50-75 (median 66.7
 [50.1-75.3])
 - higher risk MDS (69% High or Very High)
 - Suitable for reduced-intensity conditioning
- Primary endpoint 3 year OS in ITT analysis


J Clin Oncol 39:3328-3339. © 2021

Persistent mutations at Day 30 Post Transplant is Associated with Increased Risk of Progression

(HR 4.48; 95% confidence interval [CI], 2.21 to 9.08; P<0.001) independent of IPSS-R and conditioning regimens. Could detect relapse by sequencing a median of 67 days before clinical relapse

A Trial of Pre-emptive Therapy with DEC-C to Improve Outcomes in MDS Patients with Measurable Residual Disease Post Allogeneic Hematopoietic Cell Transplant (NCT04742634)

MDS Clinical Trials at Washington University/Siteman Cancer Center

		Mechanism	Study Population	Clinical trial
Ì				
	(AZD9829)	Anti-CD123 ADC	R/R CD123 Positive heme malignancies	NCT06179511
	DEC-C in MDS w/MRD post-		molecular MRD, Day 30 post-	
	alloHCT	Decitabine and Cedazuridine (DEC-C)	transplant	NCT04742634
		Whole genome convensing	Now ANIL or MDS	
	w/MRD post-	Decitabine and Cedazuridine (DEC-C) Whole genome sequencing	molecular MRD Day 30 post- transplant New AML or MDS	NCT04742634 NCT05434598 NCT04986657

Coming soon: A Phase3b trial of luspatercept for LR-MDS